Mainstreaming of Micropiles: Probabilistic Calibration of Axial Resistance for Load and Resistance Factor Design

J. Erik Loehr, Ph.D., P.E.

Glen A. Barton Professor, University of Missouri

11th Lizzi Lecture, 15th International Workshop on Micropiles Vail, Colorado May 31, 2023

15th International Workshop On Micropiles The Sebastian | Vail, Colorado May 31-June 2, 2023

Basis for presentation

- Conducted 2017-2019
- Key activities included:
 - Collection of load test records
 - Development and evaluation of design methods
 - Probabilistic calibration of resistance factors
 - Reporting and revisions to AASHTO LRFD Specifications
- Exclusively addresses geotechnical axial response

Current AASHTO Specifications

1	Table C10.9.3.5.2-1—Summary of Ty	ypical α _b Values	(Grout-to-Gro	und Bond) for Pr	eliminary Micropile D	esign (modified		
Limit State	inter Sadatini et al., 2005)						ance Factor	
	-	Typical Range of Grout-to-Ground Bond Nominal Resistance for Micropile Types ⁽¹⁾ (ksf)						
Compression – Single MP	Soil/Rock Description	Туре А	Type B	Туре С	Type D	Туре Е	0.55	
	Silt & Clay (some sand) (soft medium plastic)	0.7–1.4	0.7–2.0	0.7–2.5	0.7–3.0	0.7–2.0	0.50	
	Silt & Clay (some sand) (stiff, dense to very dense)	0.7–2.5	1.4-4.0	2.0-4.0	2.0-4.0	1.4-4.0	0.50	
	Sand (some silt) (fine, loose-medium dense)	1.4–3.0	1.4-4.0	2.0-4.0	2.0-5.0	1.4–5.0	.5.2.3-1 <= 0.70	
	Sand (some silt, gravel)	2.0-4.5	2.5-7.5	3.0-7.5	3.0-8.0	2.5-7.5		
Block Failure	Gravel (some sand)	2.0-5.5	2.5-7.5	3.0-7.5	3.0-8.0	2.5-7.5	0.60	
Uplift Resistance Single MP	Glacial Till (silt, sand, gravel) (medium-very dense, cemented)	2.0-4.0	2.0-6.5	2.5-6.5	2.5–7.0	2.0-6.5	0.55	
	Soft Shales (fresh-moderate fracturing, little to no weathering)	4.3–11.5	N/A	N/A	N/A	N/A		
	Slates and Hard Shales (fresh- moderate fracturing, little to no weathering)	10.8–28.8	N/A	N/A	N/A	N/A	.5.2.3-1 <= 0.70	
Uplift Resistance	Limestone (fresh-moderate fracturing, little to no weathering)	21.6-43.2	N/A	N/A	N/A	N/A	0.50	
	Sandstone (fresh-moderate fracturing, little to no weathering)	10.8–36.0	N/A	N/A	N/A	N/A		
Croup	Granite and Basalt (fresh-moderate fracturing, little to no weathering)	28.8-87.7	N/A	N/A	N/A	N/A		

Philosophy

Kennedy, et al. (2022)

Limited Information→ Conservative Design

Courtesy of Tim Siegel, Dan Brown & Assoc.

Typical Information→ Normal Design

Extensive Information→ Efficient Design

Design approaches

Collected load test records

Within-site variability and Among-site variability

Observed within-site variability for drilled shafts

Bayesian updating

Presumptive design methods

Recommended presumptive design models

Dand Matarial	Prelj	AASHTO	Indated Models				
Bond Material	n	μ_{q_s} (ksf)	<i>CV</i> _p	Range		μ_{q_s} (ksf)	CV _{pred}
Cohesive Soil	19	1.8	0.	0.7 – 4.0		2.9	0.55
Clean Sand	8	4.0	0.4	1.4 – 8.0		6.9	0.43
Gravelly Sand	8	4.5	0.4	2.0 - 8.0		5.8	0.46
Silty/Clayey Sand	20	4.0	0.0	0.7 – 8.0		7.7	0.63
Argillaceous Rock	17	16.8	0.4	2.0 – 28.8		19.8	0.44
Limestone	7	25.9	0.:	21.6 - 43.2		45.9	0.32
Karstic Limestone	6	12.2	0.2			21.4	0.25
Sandstone	0	7.9	0.	10.8 – 36.0		13.3	0.48
Gneiss	0	15.1	0.			24.8	0.48
Granite & Basalt	0	7.1	0.	28.8 - 97.7		16.7	0.48

Resistance factors for presumptive design models

Pond Motorial	Nom. Resist.,	Resistanc	Fact. Resist.,		
Donu material	q_s (ksf)	Calibrated	Recommended	$arphi_{q_s} \cdot q_s$ (ksf)	
Cohesive Soil	2.9	0.18		0.6	
Clean Sand	6.9	0.26		1.4	
Gravelly Sand	5.8	0.24		1.2	
Silty/Clayey Sand	7.7	0.14		1.5	
Argillaceous Rock	19.8	0.25	0.20	4.0	
Limestone	45.9	0.37	0.20	9.2	
Karstic Limestone	21.7	0.46		4.3	
Sandstone	13.3	0.22		2.7	
Gneiss	24.8	0.22		5.0	
Granite & Basalt	16.7	0.22		3.3	

13

Predictive design method – cohesive soil

14

Predictive design method – cohesive soil

Predictive design methods – cohesive soil

Predictive design methods – cohesive soil

Resistance factors for predictive design – cohesive soil

Resistance factors for design based on load tests

Design based on site-specific load tests

	Resistance Factor					
Number of Tests	Non- redundant	Redundant				
1	0.57	0.81				
2	0.70	0.94				
3	0.76	1.01				
4	0.79	1.06				
5	0.81	1.09				
7	0.84	1.14				
10	0.89	1.18				

- Nominal resistance
 established as minimum
 measured resistance from all
 tests
- No distinction regarding whether failure observed
- Agnostic to method used to establish bond resistance
- Number of tests constrained to individual "construction control areas" and consistent construction procedure

Conclusions

- Recommended design provisions provide flexibility for different design situations while still achieving target reliability
 - Site-specific load tests produce most efficient design
 - Predictive design methods produce intermediate design efficiency
 - Presumptive design methods produce least efficient designs
- Resistance factors for presumptive and predictive design methods are lower than currently adopted, but without requirement for site-specific load tests
- Resistance factors for site-specific load tests are similar to or greater than currently prescribed in AASHTO Specifications

What's next?

- Consideration by AASHTO COBS
- More research
 - Greatest knowledge gap for predictability is in rock
 - Redundancy
 - Within-site variability
 - load transfer relations

Thank you!